Ноябрь 23

Устройство аппарата плазменной резки

Устройство аппарата плазменной резкиТехнология плазменной резки крайне редко применяется в быту, зато в промышленной сфере получила очень широкое распространение. Благодаря тому, что с помощью плазмореза можно легко, быстро и качественно разрезать практически любой токопроводящий металл, а также другие материалы – камень и пластик, его используют в машиностроении, судостроении, коммунальной сфере, изготовлении рекламы, для ремонта техники и многого другого. Срез всегда получается ровным, аккуратным и красивым. Тех, кто только собрался освоить данную технологию, может интересовать резонный вопрос, что собой представляет аппарат плазменной резки, каков принцип его работы, а также какие разновидности плазморезов бывают и для чего используется каждый из них. Все это даст общее понимание технологии плазменной резки, позволит сделать правильный выбор при покупке и освоить работу с аппаратом.

Принцип работы аппарата плазменной резки металла

Как работает плазморез? И что подразумевается под словом «плазма»? Для работы плазмореза необходимо только две вещи – электричество и воздух. Источник энергии подает на резак (плазмотрон) токи высокой частоты, благодаря чему в плазмотроне возникает электрическая дуга, температура которой 6000 – 8000 °С. Затем в плазмотрон направляется сжатый воздух, который на большой скорости вырывается из патрубка, проходит через электрическую дугу, нагревается до температуры 20000 – 30000 °С и ионизируется. Воздух же, который ионизировался, теряет свойства диэлектрика и становится проводником электричества. Плазмой как раз и является этот воздух .

Вырываясь из сопла, плазма локально разогревает заготовку, в которой необходимо выполнить рез, металл плавится. Образованные на лобовой поверхности реза частички расплавленного металла сдуваются потоком воздуха, вырывающимся на огромной скорости. Так происходит резка металла.

Скорость плазменного потока (разогретого ионизированного воздуха) возрастает, если увеличить расход воздуха. Если же увеличить диаметр сопла, через которое плазма вырывается, то скорость уменьшится. Параметры скорости плазмы примерно таковы: на токе 250 А она может быть 800 м/с.

Чтобы рез получился ровным, плазмотрон необходимо держать перпендикулярно плоскости реза, максимальное допустимое отклонение 10 – 50 °. Также большое значение имеет скорость реза. Чем она меньше, тем ширина реза становится больше, а поверхности реза становятся параллельными. То же самое происходит при увеличении силы тока.

Если увеличить расход воздуха, то ширина реза уменьшится, зато кромки реза станут непараллельными.

Устройство аппарата плазменной резки

Аппарат плазменной резки состоит из источника питания. плазмотрона и кабель-шлангового пакета. с помощью которого соединяются источник питания и компрессор с плазмотроном.

Источником питания для аппарата плазменной резки может служить трансформатор или инвертор, которые подают на плазмотрон большую силу тока.

Плазмотрон. собственно, и является главным элементом аппарата – плазменным резаком. Иногда по ошибке весь аппарат называют плазмотроном. Возможно, это связано с тем, что источник питания для плазмореза не отличается никакой уникальностью, а может быть использован вместе со сварочным аппаратом. А единственным элементом, отличающим плазморез от другого аппарата, и является плазмотрон.

Основные составляющие плазмотрона – электрод, сопло и изолятор между ними.

Внутри корпуса плазмотрона находится цилиндрическая камера малого диаметра, выходной канал из которой довольно мал и позволяет формировать сжатую дугу. В тыльной стороне дуговой камеры располагается электрод, служащий для возбуждения электрической дуги.

Электроды для воздушно-плазменной резки могут быть изготовлены из бериллия, гафния, тория или циркония. На поверхности этих металлов образуются тугоплавкие оксиды, предотвращающие разрушение электрода. Но для образования этих оксидов нужны определенные условия. Самыми распространенными являются электроды из гафния. А вот из бериллия и тория их не делают, и виной тому те самые оксиды: оксид бериллия – крайне радиоактивен, а оксид тория – токсичен. Все это может крайне негативно сказаться на работе оператора.

Так как возбуждение электрической дуги между электродом и заготовкой обрабатываемого металла напрямую затруднительно, сначала зажигается так называемая дежурная дуга – между электродом и наконечником плазмотрона. Столб этой дуги заполняет весь канал. После этого в камеру начинает подаваться сжатый воздух, который, проходя сквозь электрическую дугу, нагревается, ионизируется и увеличивается в объеме в 50 – 100 раз. Сопло плазмотрона сужено книзу и формирует из разогретого ионизированного газа/воздуха поток плазмы, вырывающийся из сопла со скоростью 2 – 3 км/с. При этом температура плазмы может достигать 25 – 30 тыс. °С. В таких условиях электропроводимость плазмы становится примерно такой же, как и у обрабатываемого металла.

Когда плазма выдувается из сопла и касается факелом обрабатываемого изделия, образуется режущая плазменная дуга – рабочая, а дежурная дуга гаснет. Если вдруг по какой-то причине рабочая дуга тоже погасла, необходимо прекратить подачу воздуха, снова включить плазмотрон и сформировать дежурную дугу, а затем пустить сжатый воздух.

Сопло плазмотрона может иметь различные размеры и от этого зависят возможности всего плазмотрона и технология работы с ним. Например, от диаметра сопла плазмотрона зависит количество воздуха, которое может проходить сквозь этот диаметр за единицу времени. От количества расхода воздуха зависит ширина реза, скорость работы и скорость охлаждения плазмотрона. В плазморезах используют сопла не больше 3 мм диаметром, зато довольно длинные – 9 – 12 мм. Длина сопла влияет на качество реза, чем длиннее сопло, тем качественнее рез. Но здесь нужно быть осторожным, везде важна мера, так как слишком большое сопло будет быстрее изнашиваться и разрушаться. Оптимальной считается длина, в 1,5 – 1,8 раз больше диаметра сопла.

Крайне важно, чтобы катодное пятно фокусировалось строго по центру катода (электрода). Для этого используют вихревую подачу сжатого воздуха/газа. Если вихревая (тангенциальная) подача воздуха нарушена, то катодное пятно будет смещаться относительно центра катода вместе с дугой. Все это может привести к нестабильному горению плазменной дуги, образованию двойной дуги и даже выходу плазмотрона из строя.

В процессе плазменной резки используются плазмообразующие и защитные газы. В аппаратах плазменной резки с силой тока до 200 А (можно разрезать металл толщиной до 50 мм) используют только воздух. В таком случае воздух является плазмообразующим газом и защитным, а также охлаждающим. В сложных промышленных портальных аппаратах используют другие газы – азот, аргон, водород, гелий, кислород и их смеси.

Сопло и электрод в аппарате плазменной резки являются расходными материалами, которые необходимо своевременно заменять, не дожидаясь их полного износа.

В основном плазморезы принято покупать в готовом виде, главное – правильно подобрать нужный агрегат, тогда не придется ничего «доделывать напильником». Хотя в нашем отечестве есть «Кулибины», которые могут сделать аппарат плазменной резки своими руками, закупив некоторые детали отдельно.

Разновидности аппаратов плазменной резки

Плазморезы различают по нескольким различным параметрам. Аппараты плазменной резки могут представлять собой переносные установки, портальные системы, шарнирно-консольные машины, специализированные конструкции и установки с координатным приводом. Особенно выделяются машины плазменной резки с ЧПУ (числовым программным управлением), которые минимизируют вмешательство человека в процесс резки. Но помимо этих существуют и другие градации.

Аппараты для ручной и машинной резки

Аппараты машинной резки представляют собой плазморезы портального типа и аппараты автоматического раскроя деталей и труб. Такие аппараты используются на производстве. Качество реза таким плазморезом получается идеальным, дополнительная обработка кромок не требуется. А программное управление позволяет делать резы различной фигурной формы в соответствии с чертежом без страха дернуть рукой в неподходящий момент. Рез выполняется точно и гладко. На подобные аппараты плазменной резки металла цена на порядок выше, чем на ручные аппараты.

Трансформаторные и инверторные аппараты плазменной резки

Существуют трансформаторные и инверторные плазморезы.

Трансформаторные плазморезы тяжелее инверторных и больше по размеру, зато они более надежны, так как не выходят из строя в случае скачков напряжения. Продолжительность включения таких аппаратов выше, чем у инверторных, и может достигать 100 %. Такой параметр, как продолжительность включения, напрямую влияет на специфику работы с аппаратом. Например, если ПВ равна 40 %, это означает, что 4 минуты резак может работать без перерыва, а затем ему необходимо 6 минут отдыха, чтобы остыть. ПВ 100 % используется в производстве, там, где работа аппарат продолжается весь рабочий день. Недостатком трансформаторного плазмореза является высокое энергопотребление.

С помощью трансформаторных плазменных резаков можно обрабатывать заготовки большей толщины. На подобный аппарат воздушно-плазменной резки цена выше, чем на инверторный. Да и представляет он собой короб на колесиках.

Инверторные аппараты плазменной резки используются чаще в быту и на маленьких производствах. Они намного экономнее в энергопотреблении, обладают меньшим весом и габаритами и чаще всего представляют собой ручной аппарат. Достоинством инверторного плазмореза является стабильное горение дуги и КПД на 30 % выше, компактность и возможность вести работы в труднодоступных местах.

Аппарат воздушно-плазменной резки и водно-плазменной резки

Стоит отметить, что существуют не только аппараты воздушно-плазменной резки, принцип действия которых и устройство были описаны выше, но и аппараты водно-плазменной резки.

Если в воздушно-плазменных резаках воздух выступает и как плазмообразующий, и как защитный, и как охлаждающий газ, то в водно-плазменных резаках вода выступает в качестве охладителя, а водяной пар плазмообразователя.

Достоинствами воздушно-плазменной резки являются низкая цена и небольшой вес, зато недостаток – ограничена толщина разрезаемой заготовки, зачастую не более 80 мм.

Мощность водно-плазменных резаков позволяет разрезать толстые заготовки, зато их цена несколько выше.

Принцип работы аппарата водно-плазменной резки заключается в том, что вместо сжатого воздуха в нем используется водяной пар. Это дает возможность отказаться от использования компрессора для воздуха или газовых баллонов. Водяной пар более вязкий по сравнению с воздухом, поэтому его необходимо намного меньше, запаса в баллончике хватает примерно на месяц-два. Когда в плазмотроне протекает электрическая дуга, в него подается вода, которая испаряется. Одновременно с этим рабочая жидкость поднимает катод отрицательного полюса от катода положительного полюса сопла. В результате загорается электрическая дуга, пар ионизируется. Еще до того, как плазмотрон приблизится к обрабатываемой заготовке, загорается плазменная дуга, которая выполняет резку. Ярким представителем данной категории плазморезов является аппарат Горыныч, на такой аппарат плазменной резки цена около 800 у. е.

Контактные и бесконтактные аппараты плазменной резки

В зависимости от того, включен разрезаемый материал в электрическую схему плазменной резки или нет, зависит тип резки – контактный и бесконтактный.

Контактная плазменная резка или резка плазменной дугой выглядит так: дуга горит между электродом плазмотрона и обрабатываемой деталью. Это еще называется дугой прямого действия. Столб электрической дуги совмещен с плазменной струей, которая вырывается из сопла на большой скорости. Продуваемый через сопло плазмотрона воздух обжимает дугу и придает ей проникающие свойства. За счет высокой температуры воздуха 30000 °С, повышается скорость его истечения и плазма оказывает сильной механическое воздействие на выдуваемый металл.

Контактный тип резки применяется при работах с металлами, которые могут проводить электричество. Это изготовление деталей с прямолинейными и криволинейными контурами, резка труб, полос и прутков, выполнение отверстий в заготовках и многое другое.

Бесконтактная плазменная резка или резка плазменной струей выглядит так: электрическая дуга горит между электродом и формирующим наконечником плазмотрона, часть плазменного столба выносится за пределы плазмотрона через сопло и представляет собой высокоскоростную плазменную струю. Именно данная струя и является режущим элементом.

Бесконтактная резка используется при работе с нетокопроводящими материалами (неметаллами), например, камнем.

Работа с аппаратом плазменной резки и технология воздушно-плазменной резки – это целое искусство, требующее знаний, терпения и соблюдения всех правил и рекомендаций. Знание и понимание устройства плазмореза помогает выполнять работу качественно и аккуратно, так как оператор понимает, какие процессы происходят в плазмотроне и за его пределами в тот или иной момент, и может ими управлять. Также немаловажно соблюдать все меры предосторожности и технику безопасности, например, работать с плазморезом необходимо в костюме сварщика, в щитке, перчатках, в закрытой обуви и плотных штанах из натуральной ткани. Некоторые окислы, выделяемые в процессе резки металла, могут нанести непоправимый вред легким человека, поэтому необходимо работать в защитной маске или хотя бы обеспечить хорошую вентиляцию в рабочей зоне.

плазменная резка металла купить оборудование с чпу цена

видео как работает плазморез

плазморез какой выбрать

плазменный аппарат

как работает плазморезка


Метки: , , ,
Copyright 2017. Все права защищены.

Опубликовано 23.11.2019 admin в категории "Как работать плазменной резкой